Anionic Ring-Opening Polymerization of Trimethylsiloxy-Substituted 1-Oxa-2,5-disilacyclopentanes: Synthesis of Trimethylsiloxy-Substituted Poly[1-oxa-2,5-disila-1,5-pentanylene]s[†]

Vadim Rinatovich Ziatdinov,‡ Guoping Cai,§ and William P. Weber*,‡

D. P. and K. B. Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, and Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

Received November 14, 2001; Revised Manuscript Received January 29, 2002

ABSTRACT: 2,5,5-Trimethyl-2-trimethylsiloxy-1-oxa-2,5-disilacyclopentane (I), cis- and trans-2,5-dimethyl-2,5-bis(trimethylsiloxy)-1-oxa-2,5-disilacyclopentane (II) have been prepared from 1,3,5,7-tetramethylcyclotetrasiloxane ($D_4^{\rm H}$) and vinylpentamethyldisiloxane, vinylmethylbis(trimethylsiloxy)silane, and vinyltris(trimethylsiloxy)-silane, respectively, by a two-step synthetic process. I, II, and III undergo anionic ring-opening polymerization (AROP) to yield poly[2,2,5-trimethyl-5-trimethylsiloxy-1-oxa-2,5-disila-1,5-pentanylene] (IV), poly[2,5-dimethyl-2,5-bis(trimethylsiloxy)-1-oxa-2,5-disila-1,5-pentanylene] (V), and poly[2-methyl-2,5,5-tris(trimethylsiloxy)-1-oxa-2,5-disila-1,5-pentanylene] (VI), respectively. I—VI have been characterized by $^{\rm 1}H$, $^{\rm 13}C$, and $^{\rm 29}Si$ NMR and IR spectroscopy. Polymer microstructures have been determined by $^{\rm 29}Si$ NMR. Molecular weights of I—III have been determined by GC/MS and by high-resolution mass spectrometry. Molecular weight distributions of IV—VI have been determined by GPC. M_n 's have been independently determined by $^{\rm 1}H$ NMR analysis. The glass transition temperatures (T_g 's) and thermal stability of these polymers have been determined by DSC and TGA, respectively. Chain transfer apparently limits the molecular weight of VI.

Introduction

There is interest in the synthesis of cyclosilaalkylenesiloxanes and in the cationic ring-opening polymerization of these to yield poly(silaalkylenesiloxane)s.1 AROP of 2,2,5,5-tetramethyl-1-oxa-2,5-disilacyclopentane has been reported, $^{2-5}$ and the kinetics of this process has been studied.⁶ 2,2,5,5-Tetramethyl-1-oxa-2,5-disilacyclopentane has been used to prepare welldefined poly(α -methylstyrene)-b-poly(dimethylsiloxane) block copolymers by living anionic polymerization.⁷ Polymerization of 2-(3',3',3'-trifluoropropyl)-2,5,5-trimethyl-1-oxa-2,5-disilacyclopentane and related systems gives elastomeric materials with excellent chemical resistance, electrical properties, and strength.^{8,9} Bis(1oxa-2,5-disilacyclopentane)s undergo AROP to yield nonshrinking polycarbosilane/siloxanes. 10,11 Despite this interest in 1-oxa-2,5-disilacyclopentanes and in AROP, no examples of polymerization of trimethylsiloxy (TMSO)substituted 1-oxa-2,5-disilacyclopentanes have been reported.

Results

Herein, we report the preparation of \mathbf{I} , \mathbf{II} , and \mathbf{III} by a two-step synthesis (Figure 1). Pt-catalyzed hydrosilylation of vinylpentamethyldisiloxane, vinylmethylbis-(trimethylsiloxy)silane, or vinyltris(trimethylsiloxy)silane with D_4^H yields the expected tetra-adducts. Alkaline pyrolysis of these tetra-adducts results in rearrangement and redistribution to yield \mathbf{I} , \mathbf{II} , and \mathbf{III} . This sequence is modeled after one used by Frye to prepare 2-chloro-2,5,5-trimethyl-1-oxa-2,5-disilacyclopentane. 12,13

Figure 1. Synthesis of II.

AROP of **I**, **II**, or **III** in THF, catalyzed by dilithiodiphenylsilanediolate, ¹⁴ yields **IV**, **V**, or **VI**, respectively (Figure 2). The high reactivity of **I**, **II**, and **III** is the result of angle strain. Thus, the Si–O–Si bond angle of 1-oxa-2,5-disilacyclopentanes is appreciably less than of open chain disiloxanes, which are usually greater than 120°. ¹⁵

Experimental Section

 1 H, 13 C, and 29 Si NMR spectra were obtained on a Bruker AMX-500 MHz spectrometer. Five percent w/v CDCl $_{3}$ solutions were used to obtain 1 H NMR spectra. 13 C and 29 Si NMR spectra of 30% w/v CDCl $_{3}$ solutions were acquired. 13 C NMR spectra were obtained with broad-band proton decoupling. 1 H and 13 C NMR spectra were internally referenced to residual CHCl $_{3}$. A heteronuclear gated decoupling pulse sequence (NONOE) with

[†] This paper is dedicated to Dr. Cecil Frye.

[‡] University of Southern California, Los Angeles.

[§] Zhejiang University.

^{*} Corresponding author: e-mail wpweber@usc.edu.

Figure 2. AROP of II.

a 60 s delay was used to acquire $^{29}\mbox{Si NMR}$ spectra. These were referenced to internal TMS. IR spectra of neat liquid films on NaCl plates were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrometer.

GPC analysis of the molecular weight distribution of the polymers was performed on a Waters system equipped with a 501 refractive index detector. Two 7.8 mm \times 300 mm Styragel HT 6E and HMW 6E columns in series were used for the analysis. The eluting solvent was toluene at a flow rate of 0.5 mL/min. The retention times were calibrated against known monodisperse polystyrene standards: 929 000, 114 200, 13 700, and 794 g/mol.

Thermogravimetric analysis (TGA) of IV, V, and VI was carried out on a Shimadzu TGA-50 instrument with a flow rate of 40 cm³ of nitrogen or air per minute. The temperature was increased at 5 °C/min from 25 to 800 °C. The glass transition temperatures (T_g 's) of **IV**, **V**, and **VI** were determined by DSC on a Perkin-Elmer DSC-7. The DSC instrument was calibrated against the heat of transition (-87.06 °C) and the melting point of cyclohexane (6.54 $^{\circ}\text{C})^{16}$ as well as from the T_g of poly(dimethylsiloxane) (-124 °C). The temperature program for the analysis was begun at $-150\ ^{\circ}\text{C}$ and was increased at 10 °C/min to 50 °C.

Hexamethyldisiloxane, vinylpentamethyldisiloxane, vinylmethylbis(trimethylsiloxy)silane, vinyltris(trimethylsiloxy)silane, diphenylsilanediol, trimethylchlorosilane (TMS-Cl), D₄^H, and Karstedt catalyst (2% w/w in xylene) were obtained from Gelest. *n*-Butyllithium (2.0 M solution in pentanes), diethyl ether, THF, styrene, potassium hydroxide, and triethylamine (Et₃N) were purchased from Aldrich. Diethyl ether and THF were purified by distillation from sodium benzophenone ketyl immediately before use. All the other reagents were used as obtained.

High-resolution mass spectra were run at the University of California, Riverside, Mass Spectroscopy Facility on a VG-7070 EHF instrument. Exact masses of I-III were determined by peak matching against known masses of perfluorokerosene. A 70 eV beam of electrons was used to achieve electron impact ionization. Alternatively, ammonia was employed as the chemical ionization agent. Low-resolution mass spectra were obtained by GC/MS on a Hewlett-Packard 5890 series II GC equipped with a Hewlett-Packard 5971 series mass selective detector.

Elemental analysis of IV-VI was performed by Oneida Research Services Inc., Whitesboro, NY.

Reactions were conducted in flame-dried glassware under argon. Teflon-covered magnetic stir bars were used to stir the reactions.

 $\textbf{2,5,5-Trimethyl-2-trimethyl siloxy-1-oxa-2,5-disilacy-1-oxa-2,5-di$ clopentane (I). Vinylpentamethyldisiloxane (20 g, 115 mmol) and Karstedt catalyst (200 μ L) were placed in a 100 mL threeneck round-bottom flask equipped with a pressure equalizing addition funnel and a reflux condenser. $\hat{D_4}^H$ (6.8 g, 28 mmol) was placed in the addition funnel and was added dropwise over 1 h with refluxing to form the expected tetra-adduct. The

solution was stirred for 2 h. n-Butyllithium (300 µL of 2.0 M hexane solution) was added. The reaction mixture was heated at 320-400 °C. Under these conditions, cracking occurred. Volatile material (20.3 g) was distilled from the system and was fractionally redistilled through a 15 cm vacuum jacketed Vigreux column. A fraction, bp 156-160 °C/760 mm, 14 g, 52% yield, was obtained. ¹H NMR δ : 0.10 (s, 9H), 0.13 (s, 3H), 0.14 (s, 3H), 0.20 (s, 3H), 0.56-0.65 (m, 1H), 0.70-0.80 (m, 3H). ¹³C NMR δ: -0.63, 0.23, 0.39, 1.76, 8.68, 8.94. ²⁹Si NMR δ: -5.80 (1Si), 8.46 (1Si), 22.55 (1Si). IR ν: 2960, 2931, 2897, 2798, 1417, 1254 (Si-CH₃), 1216, 1078 (Si-O), 1060 (Si-O), 931 (strained Si-O-Si), 867, 842, 794, 770 cm⁻¹. Highresolution MS: Calcd for C₈H₂₂O₂Si₃ (M*+): 234.0928. Found: m/z. 234.0933. Low-resolution GC/MS m/z (relative intensity): 234 (5%) M^{++} , 219 (75%) $(M-15)^{+}$, 205 (45%) $(M-29)^{+}$, 191 (100%).

cis- and trans-2,5-Dimethyl-2,5-bis(trimethylsiloxy)-1oxa-2,5-disilacyclopentane (II). The Pt-catalyzed reaction of vinylmethylbis(trimethylsiloxy)silane (32 g, 0.13 mol) and D₄^H (7.6 g, 30 mmol) was carried out as above to give the expected tetra-adducts. These were not characterized but immediately subjected to pyrolysis at 360 °C in the presence of a trace of *n*-butyllithium. A 1:1 mixture of *cis*- and *trans*-II distilled from the flask. II was purified by fractional distillation through a 15 cm vacuum jacketed Vigreux column. II, bp 120 °C, 14 g, 45 mmol, \sim 37% yield was obtained. ¹H NMR δ : 0.08 (s, 18H), 0.10 (s, 18H), 0.11 (s, 6H), 0.17 (s, 6H), 0.56-0.76 (br. m, 8H). 13 C NMR δ : -0.70, 1.70, 1.74, 8.83. 29 Si NMR δ : -8.25, -7.52, 8.56, 8.83. IR ν : 2960, 2899, 1416, 12150, 1218, 1063, 939, 843, 791, 770, 755 cm⁻¹. High-resolution MS: Calcd for $C_{10}H_{29}O_3Si_4$ (M + 1)+: 309.1116. Found: 309.1194. GC/ MS m/e (relative intensity): 293 (100%) (M - 15)+, 279 (62%) $(M - 29)^+$, 265 (61%), 207 (47%).

2-Methyl-2,5,5-tris(trimethylsiloxy)-1-oxa-2,5-disilacyclopentane (III). The Pt-catalyzed reaction of vinyltris-(trimethylsilyloxy)silane (20 g, 62 mmol) and D₄^H (3.75 g, 15 mmol) was carried out as above to give the expected tetraadducts. ¹H NMR δ : 0.80–0.65 (br m, 4H), 0.16 (s, 3H), 0.13 (s, 9H), 0.111 (s, 9 H), 0.109 (s, 9H). 13 C NMR δ : 9.77, 5.84, 1.75. 1.65. -0.65. -0.67. ²⁹Si NMR δ : -52.13. -11.21. 8.92. 9.19, 9.54. IR ν : 2921, 2959, 2900, 1454, 1440, 1408, 1260, 1251, 1142, 1255, 909, 865, 841, 806, 795, 756, 707, 687, 666,

These were subjected to pyrolysis at 320-360 °C in the presence of a trace (0.3 mL) of *n*-butyllithium. Crude **III**, 15.5 g (60% purity), was distilled from the flask. III was purified by fractional distillation through a 15 cm vacuum jacketed Vigreux column. A fraction, bp 75–78 °C, 3.5 g (\sim 100% purity), 9.2 mmol, was obtained. ¹H NMR δ : 0.11 (s, 18H), 0.13 (s, 9H), 0.16 (s, 3H), 0.64–0.81 (br. m, 4H). 13 C NMR δ : -0.49, -0.47, 1.47, 1.67, 5.66, 9.59. ²⁹Si NMR δ : -52.13, -11.21, 8.92, 9.19, 9.54, IR ν : 2960, 2899, 1416, 1250, 1218, 1063, 939, 843, 791, 770, 755 cm $^{-1}$. High-resolution MS: Calcd for $C_{12}H_{35}O_4$ - $Si_{5}\ (M\ +\ 1)^{+}{:}\ 383.130\bar{3}.$ Found: 383.1380. GC/MS $\emph{m/e}\ (rel$ intensity): $367 (100\%) (M - 15)^+$, $353 (52\%) (M - 29)^+$, 279 (279)(85%), 265 (31%), 207 (29%), and 73 (66%).

Poly[2,2,5-trimethyl-5-trimethylsiloxy-1-oxa-2,5-disila-1,5-pentanylene] (IV). I (1.0 g, 4.27 mmol) was placed in a 10 mL round-bottom flask that was sealed with a rubber septum. THF (2.0 mL) and 20 μ L of a THF solution of dilithiodiphenylsilanediolate initiator (0.308 mol/L) (6.16 μ mol) were added. The polymerization proceed for 2.0 h at 0 °C. During this time, the solution became noticeably more viscous. At this time, TMS-Cl (7 μ L) and Et₃N (7 μ L) were added sequentially to quench the reaction. The polymer was precipitated three times from a mixture of diethyl ether and methanol. It was then dried under vacuum. In this way, 0.99 g, 99% yield of **IV**, $M_{\rm w}/M_{\rm n}=82\,730/51\,730$ and $T_{\rm g}=-89\,^{\circ}{\rm C}$ was obtained. **IV** had the following spectral properties. ¹H NMR δ: 0.004 (s, 1.5H), 0.026 (s, 1.5H), 0.031 (s, 3H), 0.057 (s, 3H), 0.086 (s, 5.5H), 0.089 (s, 4.5H), 0.315-0.487 (m, 4H), 13C NMR δ : -1.19, -1.11, -0.48, -0.46, -0.34, 1.92, 9.00, 9.01, 9.57, 9.63. ²⁹Si NMR δ : -21.79, -21.73, -21.69, -21.64, -21.07, -21.00, 6.68, 6.79, 8.00, 8.01, 8.18, 8.19, 8.20 (Figure 3). IR ν :

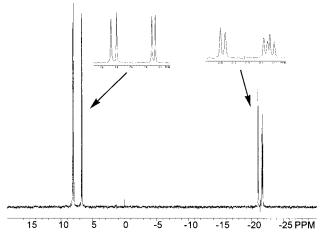


Figure 3. ²⁹Si NMR of IV.

2958, 2912, 2882, 2789, 1408, 1253 (Si–CH₃), 1136, 1048 (Si–O–Si), 873, 840, 778 cm $^{-1}$. Elemental Anal. Calcd for C₈H₂₂O₂-Si₃: C, 40.97; H, 9.46. Found: C, 40.55; H, 9.63.

A similar polymerization was carried out at room temperature for 2 h. A 98.7% yield of **IV** was obtained, $M_{\rm w}/M_{\rm n}=124\ 100/51\ 360,\ T_{\rm g}=-89\ ^{\circ}{\rm C}.$ It had identical spectral properties to that prepared above.

Poly[2,5-dimethyl-2,5-bis(trimethylsiloxy)-1-oxa-2,5**disila-1,5-pentanylene**] (V). A 1:1 mixture of *cis-* and *trans-*II, 1.6 g (5.19 mmol), and 1 mL of THF was placed in a 10 mL round-bottom flask. Dilithiodiphenylsilanediolate in THF (20 μ L) (6.16 μ mol) was added at room temperature. The reaction was stirred for 4 h, during which time the solution became viscous. The reaction was quenched by the sequential addition of TMS-Cl and Et₃N. V was precipitated into methanol. The precipitate was dissolved in a minimum amount of THF and reprecipitated into methanol. In this way, 1 g, 63% yield of V, $M_{\rm w}/M_{\rm n} = 30~700/17~300,~T_{\rm g} = -85~{\rm ^{\circ}C}$ was obtained. ¹H NMR δ: 0.02 (br s, 6H), 0.09 (br s, 18 H), 0.40 (br s, 4H). ¹³C NMR δ : -1.21, 1.94, 8.94. ²⁹Si NMR δ : -21.84, -21.65, 6.74, 6.78. IR v: 2959, 2916, 2792, 1406, 1254, 1137, 1045, 841, 788, 754 cm⁻¹. Elemental Anal. Calcd for C₁₀H₂₈O₃Si₄: C, 38.37; H, 9.14. Found: C, 38.37; H, 8.98.

Poly[2-methyl-2,5,5-tris(trimethylsiloxy)-1-oxa-2,5-disila-1,5-pentanylene] (VI). III, 1 g (2.62 mmol), and THF (100 μL) were placed in a 10 mL round-bottom flask what was sealed with a rubber septum. Dilithiodiphenylsilanediolate in THF (20 μ L, 0.30 M) was added at room temperature. After 1.5 h, the viscous reaction was quenched by sequential addition of 5 μ L of TMS-Cl and 5 μ L of Et₃N. The reaction mixture was dissolved in a minimum amount of diethyl ether and was precipitated with methanol three times. In this way 0.8 g, 80% yield, of VI, $M_{\rm w}/M_{\rm n}=6120/4990$ and $T_{\rm g}=-96$ °C, was obtained. ${}^{1}H$ NMR δ : 0.51–0.38 (br m, 4H), 0.10 (s, 18H), 0.09 (s, 9H), 0.03 (s, 3H). 13 C NMR δ : 9.26, 5.90, 1.97, 1.87, -1.35. ²⁹Si NMR δ : 7. 08, 7.02, 6.78, -22.06, -65.76. Additional small peaks were observed in the 29 Si NMR at δ : 7.24, 6.85, -20.83, -21.73, -55.00 (see Figure 4). IR ν: 2960, 2918, 2900, 2799, 1451, 1439, 1408, 1252, 1143, 1048 (br s), 945, 863, 840, 789, 756 cm⁻¹. Elemental Anal. Calcd for $C_{12}H_{34}O_4Si_5$: C, 37.65; H, 8.95. Found: C, 37.43; H, 8.65.

Discussion

AROP of **I**, **II**, and **III**, catalyzed by dilithiodiphenylsilanediolate, were carried out at room temperature. These conditions have been previously found to be successful for the AROP of 1,1-bis(trimethylsiloxy)tetramethylcyclotrisiloxane. ¹⁶ The progress of the polymerizations were qualitatively monitored by an increase in the viscosity of the reaction solutions. A very high yield (99%) of high molecular weight **IV** is obtained

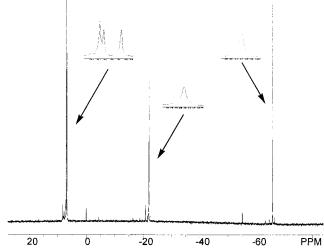


Figure 4. ²⁹Si NMR of VI.

in the AROP of **I**. Apparently, neither redistribution nor cyclization processes are important in this case.

Comparison of $M_{\rm w}/M_{\rm n}$ Determined by GPC and M_n by End Group Analysis. Molecular weight distributions (M_w/M_n) have been determined by GPC. These were calibrated by comparison to narrow molecular weight distribution polystyrene standards. $M_{\rm n}$ has been independently determined by comparison of the ¹H NMR integration intensities of the signals due to Simethyl groups, methylene groups, and diphenylsilanediolate initiator. Thus, high gain ¹H NMR of the aromatic region shows, in addition to the peak due to residual CHCl₃ in the CDCl₃ solvent, signals due to the diphenylsilanediolate initiator. For I, setting the value of the integration of the signals due to the initiator to 10H, the integration of the methylene protons gives a value of ~1907H while the Si-methyl protons have an intensity equal to \sim 7800H. The observed intensity ratio of the Si-methyl to methylene signals 4.1:1 is in close agreement with the expected value of 4.5:1 based on the structure of I. Comparison of the integration of the signal due to the diphenylsilanediolate initiator 10H to the methylene signals 1907H is consistent with a polymer whose degree of polymerization (DP) is \sim 477. Similar comparison of the initiator signal to the Simethyl signals is consistent with a polymer whose DP is \sim 431. Using an average of these values, $M_{\rm n}$ is calculated to be 454 × 234 g/mol (molecular weight of I) or 106 000 g/mol. The value for $M_{\rm n}$ by GPC is 51 000.

If we assume the following in the AROP of I—initiation is fast, chain transfer does not occur, and termination does not happen prior to addition of TMS—Cl/Et $_3$ N—then the DP can be calculated from the molar ratio of I/initiator. On this basis, the DP should be 693. Clearly, the molecular weight of IV is lower than predicted.

A similar analysis of the 1H NMR of \mathbf{V} has been carried out. The intensity of the signals due to the diphenylsilanediolate initiator has been set to 10H. This value has been used to calibrate the 1H NMR integration intensity of the signals in the Si-methyl region. These are consistent with the presence of $\sim 3900H$. Since each molecule of \mathbf{II} has 24 Si-methyl hydrogens, the degree of polymerization of \mathbf{V} based on this 1H NMR analysis is ~ 160 . Since there are four methylene hydrogens in each monomer unit, a polymer with a DP of ~ 160 should give an integration value for the

Figure 5. Analysis of microstructure of **IV**.

Figure 6. Competition between termination/chain transfer and propagation.

methylene groups of 640H. This is in close agreement with the observed value of 660H. On the basis of this analysis and the molecular weight of \mathbf{H} , M_n is calculated to be 160×308 g/mol or $\sim 49\,300$ g/mol. On the other hand, $M_{\rm n}$ by GPC is ~17 000. The DP predicted from the ratio of II/initiator is 840.

The AROP of **III** was quenched with TMS-Cl/Et₃N. The intensities due to Si-methyl and methylene signals were calibrated based on the intensity of the initiator signals (10H). Comparison of the integration of the signals due to the Si-methyl groups ~3750H to those due to the methylene groups ~515H gives a ratio of \sim 7.3:1, in reasonable agreement with the expected value of 7.5:1. The intensity of the Si-methyl signals is consistent with the presence of 125 monomer units in each polymer. The intensity of the signals due to the methylene groups is consistent with \sim 129 monomer units in each polymer. On this basis, we calculate that the polymer molecular weight $M_{\rm n}$ is 125 \times (382 g/mol) = 47 750 g/mol. On the other hand, $M_{\rm n}$ observed by GPC is only ~5000 g/mol. The DP calculated based on the molar ratio of **III**/initiator is \sim 435. The reasons for these large discrepancies between $M_{\rm n}$ by GPC and ¹H NMR analysis are not understood.

By comparison with IV and V, the molecular weight of VI, based on GPC, is quite low and its distribution $(M_{\rm w}/M_{\rm n}=1.2)$ is quite narrow. By comparison, the minimum molecular weight distributions of IV and V are 1.6 and 1.8, respectively. In fact, VI might be considered an oligomer rather than a polymer. This may be due to chain transfer. Reactive hypervalent pentacoordinated siliconate species are key intermediates in the AROP of I, II, and III. These are formed by nucleophilic attack of a silanolate one of the silyl centers of the 1-oxa-2,5-disilacyclopentanes. Chain propagation occurs when heterolytic bond scission of the Si-O bond of the strained 1-oxa-2,5-disilacyclopentane siliconate occurs to yield a new reactive silanolate. On the other hand, chain transfer occurs if the hypervalent pentacoordinate siliconate species loses a trimethylsilanolate group. This results in termination and chain transfer if the trimethylsilanolate lost initiates growth of a new polymer chain growth (Figure 6).

A resonance (-55 ppm) consistent with terminal 1-oxa-2,5-silacyclopentanyl end groups is observed in the ²⁹Si NMR spectrum of VI; no extra signals are detected in the 29Si NMR of IV or V. This may be due to the fact that the molecular weights of IV and V are significantly higher than that of VI. AROP of 1,1-bis-(trimethylsiloxy)-3,3,5,5-tetramethylcyclotrisiloxane also yields low molecular weight polymer, which has also been attributed to chain transfer. Apparently, two trimethylsiloxy groups substituted on a silyl center facilitate chain transfer.¹⁶

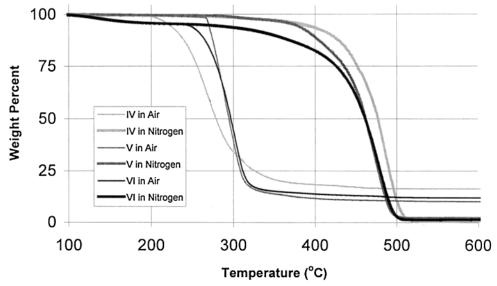


Figure 7. Thermal stability of IV, V, and VI in air and nitrogen.

 1 H NMR analysis of **IV**, **V**, and **VI** consistently yields higher values of M_{n} than those obtained by GPC. This may be due to the fact that the hydrodynamic volume of branched polymers is smaller than that of similar linear materials. In this regard, the pendant trimethylsiloxy substituents of **IV**, **V**, and **VI** may function as branching groups.

Determination of the Polymer Microstructures. We expected that AROP of I would lead to IV with a regular microstructure. This hypothesis was based on the assumption that nucleophilic attack by the silanolate would occur preferentially on the TMSO-substituted silicon. This silyl center is substituted by two electronegative oxygen atoms. This electronic inductive effect makes this silicon more positive and thus more susceptible to nucleophilic attack than the other silicon atom that is only substituted by one oxygen. Similarly, AROP of 1,1-bis(trimethylsiloxy)tetramethylcyclotrisiloxane leads to poly[1,1-bis(trimethylsilyloxy)-3,3,5,5-tetramethyltrisiloxane] with a completely regular microstructure. 16 If such a regioselective AROP of I had occurred, IV would be predicted to have three ²⁹Si NMR resonances and six ¹³C NMR. The two methyl groups in (CH₃)₂Si units are diastereotopic. In fact, 10 ¹³C signals and 12 ²⁹Si NMR resonances (Figure 5) are observed. These can be accounted for if AROP of I is not regioselective. Apparently, nucleophilic attack occurs on both of the silyl centers of I with almost equal facility. This leads to head-to-head, head-to-tail, and tail-to-tail units (Figure 5). Four of the ²⁹Si signals are due to −(CH₃)₂-SiO- (A) units, six to -CH₃Si(OTMS)O- (B) units, and two to the pendant OTMS groups. The silicon atom of B units is a center of chirality. On the basis of a triad analysis, there are two types of B units (ABA or BBA) to which the TMSO groups can be bonded. Pentad analysis predicts four A-centered units (ABABA, BAA-BA, BAABB, BBABA). Finally, pentad analysis predicts four types of B-centered units (BABAB, BABBA, AA-**B**AB, AA**B**BA). The chiral silvl centers of pentads BABBA and AABBA interact with one another. This results in two resonances for each pentad due to existence of both RR,SS and RS,SR diastereoisomers. Thus, six resonances result from B units. This analysis predicts 12 ²⁹Si resonances, as is observed. Similar analysis predicts 10 ¹³C signals. In fact, 10 are detected. The lack of regiospecificity in AROP of I may be due to its increased reactivity compared to cyclotrisiloxanes.

The 1H and ^{13}C NMR spectra of \boldsymbol{V} are quite simple. On the other hand, the ^{29}Si NMR spectra are more complex. A total of four resonances are observed. Two of these at 6.74 and 6.78 ppm are due to the TMSO groups. The other two at -21.84 and -21.65 ppm are due to the chiral silyl centers $-CH_3\boldsymbol{Si}(OTMS)O-$. Two adjacent chiral silyl centers interact to form a pair of diastereoisomers RR,SS and RS,SR. Apparently, this diastereoisomeric relationship also affects the TMSO silyl centers.

The 1 H, 13 C, and 29 Si NMR of **VI** are very simple and consistent with a highly regular microstructure: $-[CH_{3}[(CH_{3})_{3}SiO]Si-CH_{2}CH_{2}-Si(OSi(CH_{3})_{3})_{2}]-O]_{n}-.$ In the 1 H NMR spectrum, the singlet at 0.10 ppm (18H) is due to the two equivalent TMSO groups of the $[(CH_{3})_{3}-SiO]_{2}Si$ units. The singlet at 0.09 ppm (9H) is due to the TMSO group of the $CH_{3}[(CH_{3})_{3}SiO]Si-$ units, and the singlet at 0.03 ppm is due to the Si-methyl group of the $CH_{3}[(CH_{3})_{3}SiO]Si-$ units. In the 13 C NMR, five

resonances are observed. Those at 9.26 and 5.90 ppm are due to the nonequivalent methylene groups, while the two resonances at 1.97 and 1.87 ppm are due to the TMSO groups. The signal at -1.35 ppm can be assigned to the Si-methyl group. Five resonances are observed in the 29 Si NMR rather than the four which might be expected. This is apparently due to the fact that the silyl center of the CH₃[(CH₃)₃SiO|Si- unit is chiral. This causes the TMSO groups of the Si(OSi(CH₃)₃)₂- unit to be diastereotopic (Figure 4).

Thermal Stability of Polymers. IV is quite thermally stable as measured by TGA. In nitrogen, it does not decompose until 315 °C. Above this temperature, it undergoes catastrophic decomposition. By 515 °C, virtually no residue remains. On the other hand, in air, decomposition begins at 190 °C. By 350 °C only 20% of the initial sample weight remains. Above this temperature, a 5% weight loss occurs. On heating to 800 °C, a residue amounting to \sim 15% of the initial sample weight remains.

V is also quite thermally stable. In nitrogen, **V** does not begin to decompose until $\sim\!\!290\,$ °C. Above this temperature, it undergoes catastrophic decomposition. By 500 °C, none of the starting polymer sample remains. Surprisingly, unlike **IV**, **V** is almost as thermally stable in air as it is in nitrogen. It does not begin to decompose until 265 °C. Above this temperature, the polymer undergoes rapid decomposition. By 320 °C, only $\sim\!\!12\%$ of the initial polymer sample weight remains. No further loss of weight occurs on heating the sample to 800 °C.

The thermal decomposition of **VI** is similar to that of **V**. In nitrogen, **VI** is thermally stable to 300 °C. Above this temperature, catastrophic decomposition occurs. By 500 °C, only a few percent of residue remains. In air, **VI** is thermally stable to 250 °C. Above this temperature, **VI** undergoes rapid catastrophic decomposition. By 300 °C, 95% of the initial sample weight has been lost. Between 300 and 800 °C a few percent additional weight loss is observed. Given the low molecular weight of **VI**, its relatively high thermal stability is unexpected (Figure 7).

 T_g 's of Polymers. Both IV and V have similar T_g 's, -89 and -85 °C, respectively. The T_g of VI, on the other hand, is lower at -96 °C. This may reflect the low molecular weight of VI.

Acknowledgment. We thank the D. P. and K. B. Loker Hydrocarbon Research Institute and the Office of Naval Research for support of this work.

References and Notes

- Tapsak, M. A.; Grailer, T.; Miller, D.; Benz, M. E.; DiDomenico, E. J. Inorg. Organomet. Polym. 1999, 9, 35.
- (2) Merker, R. L. U.S. Patent, 3,041,362, June 26, 1962.
- (3) Piccoli, W. A.; Haberland, G. G.; Merker, R. L. J. Am. Chem. Soc. 1960, 82, 1883.
- (4) Suryanarayanan, B.; Peace, B. W.; Mayhan, K. G. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 1089.
- (5) Suryanarayanan, B.; Peace, B. W.; Mayhan, K. G. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 1109.
- (6) Chojnowski, J.; Mazurek, M. Makromol. Chem. Phys. 1975, 176, 2999.
- (7) Lee, J.; Hogen-Esch, T. E. Macromolecules 2001, 34, 2095.
- (8) Takago, T.; Kishita, H.; Kinami, H.; Fukuda, K.; Sato, S.; Yamaguchi, K.; Sugamnuma, S. U.S. Patent 5,117,025, May 26, 1992.
- Takago, T.; Kinami, H.; Inomata, T.; Sato, S.; Yamada, H. U.S. Patent 5,239,034, Aug 24, 1993.
- (10) Chen, P. P.; Rahimian, K.; Loy, D. A. Polym. Prepr. 2001, 42 (1), 330.

- Loy, D. A.; Rahimian, K.; Samara, M. Angew. Chem., Int. Ed. 1999, 38, 555.
 Frye, C. L.; Collins, W. T. J. Org. Chem. 1970, 35, 2964.
 Frye, C. L. U.S. Patent, 3,427,338, Feb 11, 1969.
 Battjes, K.; Kuo, C.-M.; Miller, R. L.; Saam, J. C. Macromolecules 1995, 28, 790.
 Eaborn, C. Organosilicon Compounds; Butterworth Scientific Publications: London, England, 1960; p 254.

- (16) Aston, J. G.; Szabz, G. J.; Fink, H. L. J. Am. Chem. Soc. 1943, *65*, 1135.
- (17) Clarson, S. J.; Dodgson, K.; Semlyen, J. A. Polymer 1985, 26, 930.
- (18) Cai, G.; Weber, W. P. *Polym. Prepr.* **2001**, 42 (1), 171. † This paper is dedicated to Dr. Cecil Frye.

MA011991J